Ejemplo de problemas relacionados con la Segunda Ley de Newton.
- 1. Una fuerza le proporciona a la masa de 2,5 Kg. una aceleración de 1,2 m/s2. Calcular la magnitud de dicha fuerza en Newton y dinas.
Datos
m = 2,5 Kg.
a =1,2 m/s2.
F =? (N y dyn)
Solución
Nótese que los datos aparecen en un mismo sistema de unidades (M.K.S.)
Para calcular la fuerza usamos la ecuación de la segunda ley de Newton:
Sustituyendo valores tenemos:
Como nos piden que lo expresemos en dinas, bastará con multiplicar por 105, luego:
- 2. ¿Qué aceleración adquirirá un cuerpo de 0,5 Kg. cuando sobre él actúa una fuerza de 200000 dinas?
Datos
a =?
m = 2,5 Kg.
F = 200000 dyn
Solución
La masa está dada en M.K.S., en cambio la fuerza está dada en c.g.s.
Para trabajar con M.K.S. debemos transformar la fuerza a la unida M.K.S. de esa magnitud (N)
La ecuación de la segunda ley de Newton viene dada por:
Despejando
a tenemos:
Sustituyendo sus valores se tiene:
- 3. Un cuerpo pesa en la tierra 60 Kp. ¿Cuál será a su peso en la luna, donde la gravedad es 1,6 m/s2?
Datos
PT= 60 Kp = 588 N
PL =?
gL = 1,6 m/s2
Solución
Para calcular el peso en la luna usamos la ecuación
Como no conocemos la masa, la calculamos por la ecuación:
que al despejar
m tenemos:
Esta masa es constante en cualquier parte, por lo que podemos usarla en la ecuación (I):
- 4. Un ascensor pesa 400 Kp. ¿Qué fuerza debe ejercer el cable hacia arriba para que suba con una aceleración de 5 m/s2? Suponiendo nulo el roce y la masa del ascensor es de 400 Kg.
Solución
Como puede verse en la figura 7, sobre el ascensor actúan dos fuerzas: la fuerza F de tracción del cable y la fuerza P del peso, dirigida hacia abajo.
La fuerza resultante que actúa sobre el ascensor es F – P
Aplicando la ecuación de la segunda ley de Newton tenemos:
Al transformar 400 Kp a N nos queda que:
400 Kp = 400 ( 9,8 N = 3920 N
Sustituyendo los valores de P, m y a se tiene:
F – 3920 N = 400 Kg. ( 0,5 m/s2
F – 3920 N = 200 N
Si despejamos F tenemos:
F = 200 N + 3920 N
F = 4120 N
- 5. Un carrito con su carga tiene una masa de 25 Kg. Cuando sobre él actúa, horizontalmente, una fuerza de 80 N adquiere una aceleración de 0,5 m/s2. ¿Qué magnitud tiene la fuerza de rozamiento Fr que se opone al avance del carrito?
Solución
En la figura 8 se muestran las condiciones del problema
La fuerza F, que actúa hacia la derecha, es contrarrestada por la fuerza de roce Fr, que actúa hacia la izquierda. De esta forma se obtiene una resultante F – Fr que es la fuerza que produce el movimiento.
Si aplicamos la segunda ley de Newton se tiene:
Sustituyendo F, m y a por sus valores nos queda
80 N – Fr = 25 Kg. ( 0,5 m/s2
80 N – Fr = 12,5 N
Si despejamos Fr nos queda:
Fr = 80 N – 12,5 N
Fr = 67,5 N
- 6. ¿Cuál es la fuerza necesaria para que un móvil de 1500 Kg., partiendo de reposo adquiera una rapidez de 2 m/s2 en 12 s?
Datos
F =?
m = 1500 Kg.
Vo = 0
Vf = 2 m/s2
t = 12 s
Solución
Como las unidades están todas en el sistema M.K.S. no necesitamos hacer transformaciones.
La fuerza que nos piden la obtenemos de la ecuación de la segunda ley de Newton:
De esa ecuación conocemos la masa, pero desconocemos la aceleración. Esta podemos obtenerla a través de la ecuación
Porque partió de reposo.
Sustituyendo Vf y t por sus valores tenemos:
Si sustituimos el valor de a y de m en la ecuación (I) tenemos que:
- 7. Calcular la masa de un cuerpo, que estando de reposo se le aplica una fuerza de 150 N durante 30 s, permitiéndole recorrer 10 m. ¿Qué rapidez tendrá al cabo de ese tiempo?
Datos
m =?
Vo = 0
F = 150 N
t = 30 s
x = 10 m
Vf =?
Solución
Como nos piden la masa, despejamos la segunda la segunda ley de Newton:
Como no se conoce la aceleración y nos dan la distancia que recorre partiendo de reposo, usamos la ecuación de la distancia en función del tiempo y despejamos (a)
Sustituyendo valores tenemos:
Sustituyendo los valores de X y t en (II) tenemos:
Sustituyendo a y F por sus valores en (I):
Tercera ley de newton.
- 1. Consideramos un cuerpo con un masa m = 2 Kg. que está en reposo sobre un plano horizontal, como el indicado en la figura 17. a) Haz un diagrama de cuerpo libre. b) Calcular la fuerza con que el plano reacciona contra el bloque.
Solución
a) Las fuerzas que actúan sobre el bloque están representadas en la figura 18, donde se elije un eje de coordenadas cuyo origen es el centro del cuerpo, mostrándose las fuerzas verticales: el peso
y la normal
El peso del cuerpo, dirección vertical y sentido hacia abajo.
Normal, fuerza que el plano ejerce sobre el bloque.
Al diagrama así mostrado se le llama diagrama de cuerpo libre.
b) Para calcular la fuerza que el plano ejerce sobre el bloque aplicamos la segunda ley de Newton:
Como
actúa hacia arriba y
actúa hacia abajo, la resultante viene dada en módulo por N – P, que al aplicar la segunda ley de Newton escribimos:
N – P = m . a
Como en la dirección vertical no hay movimiento entonces la aceleración es cero (a = 0), luego
N – P = 0
N = P
N = m . g (porque P = m ( g)
Sustituyendo los valores de m y g se tiene:
N = 2 Kg . 9,8 m/s2
N = 19,6 N
Esta es la fuerza con que el plano reacciona sobre el bloque.
- 2. En la figura 19 se muestran dos masas M1 = 3 Kg. y M2 = 5 Kg. colgando de los extremos de un hilo que pasa por la garganta de una polea a) Hacer un diagrama de las fuerzas que actúan b) Calcular la tensión del hilo y la aceleración con que se mueve el sistema.
Solución
a) Obsérvese la figura 20(a), la cual representa el diagrama del cuerpo libre para el cuerpo de masa M1.
Es la tensión del hilo, actuando hacia arriba.
El peso del cuerpo de masa M1.
En la figura 20(b) se muestra el diagrama de cuerpo libre para el cuerpo de masa M2.
Es la tensión del hilo, actuando hacia arriba.
El peso del cuerpo de masa M2.
b) Como el cuerpo de masa M1 sube, la tensión T es mayor que P, por lo que podemos escribir en módulo la segunda ley de Newton así:
T – P1 = M1 . a.………………………………………… (A)
Como el cuerpo de masa M2 baja, el peso P2 es mayor que T, pudiéndose escribir en módulo la segunda ley de Newton así:
P2 – T = M2 . a.………………………………………… (B)
Despajando T de la ecuación (A) nos queda que:
T = M1 . a + P1
Sustituyendo ésta expresión en (B) tenemos:
P2 – (M1 . a + P1) = M2 . a
P2 – P1 = M2 . a + M1 . a
Sacando a como factor común:
P2 – P1 = a . (M2 + M1)
Despejando nos queda:
(C)
Calculemos por separado P1 y P2
P1 = M1 . g = 3 Kg . 9,8 m/s2
P1 = 29,4 N
P2 = M2 . g = 5 Kg. . 9,8 m/s2
P2 = 49 N
Sustituyendo todos los valores conocidos en la expresión (C) nos queda que:
La tensión la obtenemos sustituyendo en la expresión:
T = M1 . a + P1
T = 3 Kg . 2,45 m/s2 + 29,4 N
T = 7,35 N + 29,4 N
T = 36,4 N
Luego
y T = 36,4 N
- 3. En la figura 21 se muestran dos bloques de masa M2 = 2 Kg. que arrastra sobre el plano horizontal al cuerpo de masa M1 = 7 Kg. Calcular la aceleración del sistema y tensión de la cuerda.
Solución
Antes debemos hacer un diagrama del cuerpo libre.
Para el bloque horizontal se muestra la figura 21(a) y para el bloque vertical el diagrama de la figura 21(b).
Horizontalmente se desplaza hacia la derecha y la única fuerza que actúa es la tensión, por lo que puede escribirse de acuerdo con la segunda ley de Newton que:
T = M1 . a.………………………….…………….….… (I)
En el bloque de masa M2, se lleva a cabo un movimiento vertical hacia abajo, pudiéndose escribir que:
P2 – T = M2 . a.………………………………………… (II)
Sustituyendo T de la ecuación (I) en (II) se tiene:
P2 – M1 . a = M2 ( a
Transponiendo términos se tiene que:
P2 = M2 . a + M1 ( a
Sacando a como factor común:
P2 = a . (M2 + M1)
Despejando nos queda:
Sustituyendo todos los valores conocidos en la expresión (C) nos queda que:
La tensión de la cuerda la obtenemos sustituyendo en la expresión:
T = M1 . a = 2Kg. ( 2,17 m/s2
T = 4,34 N
Ley de gravitación universal.
- 1. Hallar la fuerza con que se atraen dos masas de 5,5 ( 1024 Kg. y 7,3 ( 1022 Kg. separados por una distancia de 3,8 ( 108 m.
Solución
F = ?
M1 = 5,5 . 1024 Kg.
M2 = 7,3 . 1022 Kg.
d = 3,8 . 108 m
Para calcular la fuerza de atracción entre las masas M1 y M2, sustituimos en la fórmula de la cuarta ley de Newton el valor de cada una de ellas, así como los valores de G, y de la distancia d:
Quedando la fórmula como sigue:
- 2. Calcular la masa de un cuerpo, si fuerza de atracción entre dos masas es de 1,8 ( 10-2 N y la masa de una de ellas 0,6 ( 102 Kg., y las separa una distancia de 0,2 ( 10-1 m.
Solución
F = 1,8 ( 10-2 N
M1 = 0,6 ( 102 Kg.
M2 =?
d = 0,2 ( 10-1 m
Despejando M2 de la fórmula de la cuarta ley de Newton tenemos
Sustituyendo en la fórmula los valores tenemos:
PRIMERA CONDICIÓN DE EQUILIBRIO
PRIMERA CONDICIÓN DEL EQUILIBRIO. Consideremos un objeto que cuelga de una cuerda, como se muestra en la figura. Sobre el objeto actúan dos fuerzas: una de ellas es la tensión de la cuerda que impide que el objeto caiga, la otra es la fuerza de gravedad, la cual actúa sobre el objeto atrayéndolo hacia abajo, a dicha fuerza la definimos como el peso del objeto.
En resumen tenemos que:
REGLAS PARA RESOLVER PROBLEMAS APLICANDO LA PRIMERA CONDICIÓN DEL EQUILIBRIO:
1. Considere todas las fuerzas que actúan sobre el cuerpo en cuestión.
2. Traza un diagrama de cuerpo libre y establece un sistema de coordenadas cartesianas.
3. Lleva a cabo la descomposición de las fuerzas sobre los ejes X y Y.
4. Iguala a cero la suma algebraica de las componentes escalares sobre cada eje (primera condición del equilibrio).
5. Resuelve el sistema de ecuaciones resultante
ROZAMIENTO O FRICCIÓN
La fuerza de fricción o la fuerza de rozamiento es la fuerza que existe entre dos superficies en contacto, que se opone al movimiento relativo entre ambas superficies (fuerza de fricción dinámica) o a la fuerza que se opone al inicio del deslizamiento (fuerza de fricción estática). Se genera debido a las imperfecciones, mayormente microscópicas, entre las superficies en contacto. Estas imperfecciones hacen que la fuerza perpendicular R entre ambas superficies no lo sea perfectamente, sino que forme un ángulo con la normal N (el ángulo de rozamiento). Por tanto, la fuerza resultante se compone de la fuerza normal N (perpendicular a las superficies en contacto) y de la fuerza de rozamiento F, paralela a las superficies en contacto.
Rozamiento entre superficies de dos sólidos
En el rozamiento entre dos cuerpos se ha observado los siguientes hechos:
- La fuerza de rozamiento tiene dirección paralela a la superficie de apoyo.
- El coeficiente de rozamiento depende exclusivamente de la naturaleza de los cuerpos en contacto, así como del estado en que se encuentren sus superficies.
- La fuerza máxima de rozamiento es directamente proporcional a la fuerza normal que actúa entre las superficies de contacto.
- Para un mismo par de cuerpos (superficies de contacto), el rozamiento es mayor un instante antes de que comience el movimiento que cuando ya ha comenzado (estático Vs. cinético).
El rozamiento puede variar en una medida mucho menor debido a otros factores:
- El coeficiente de rozamiento es prácticamente independiente del área de las superficies de contacto.
- El coeficiente de rozamiento cinético es prácticamente independiente de la velocidad relativa entre los móviles.
- La fuerza de rozamiento puede aumentar ligeramente si los cuerpos llevan mucho tiempo sin moverse uno respecto del otro ya que pueden sufrir atascamiento entre sí.
Algunos autores sintetizan las leyes del comportamiento de la fricción en los siguientes dos postulados básicos:1
- La resistencia al deslizamiento tangencial entre dos cuerpos es proporcional a la fuerza normal ejercida entre los mismos.
- La resistencia al deslizamiento tangencial entre dos cuerpos es independiente de las dimensiones de contacto entre ambos.
La segunda ley puede ilustrarse arrastrando un bloque sobre una superficie plana. La fuerza de arrastre será la misma aunque el bloque descanse sobre la cara ancha o sobre un borde más angosto. Estas leyes fueron establecidas primeramente por Leonardo da Vinci al final del siglo XV, olvidándose después durante largo tiempo; posteriormente fueron redescubiertas por el ingeniero francés Amontons en 1699. Frecuentemente se les denomina también leyes de Amontons.
Tipos de fricción
Fig. 2 - Diagrama de fuerzas para el esquema de la figura 1. Según sea la magnitud del empuje T habrá fricción estática (equilibrio) o cinética (con movimiento).
Existen dos tipos de rozamiento o fricción, la fricción estática (Fe) y la fricción dinámica (Fd). El primero es la resistencia que se debe superar para poner en movimiento un cuerpo con respecto a otro que se encuentra en contacto. El segundo, es la resistencia, de magnitud considerada constante, que se opone al movimiento pero una vez que este ya comenzó. En resumen, lo que diferencia a un roce con el otro, es que el estático actúa cuando los cuerpos están en reposo relativo en tanto que el dinámico lo hace cuando ya están en movimiento.
La fuerza de fricción estática, necesaria para vencer la fricción homóloga, es siempre menor o igual al coeficiente de rozamiento entre los dos objetos (número medido empíricamente y que se encuentra tabulado) multiplicado por la fuerza normal. La fuerza cinética, en cambio, es igual al coeficiente de rozamiento dinámico, denotado por la letra griega , por la normal en todo instante.
No se tiene una idea perfectamente clara de la diferencia entre el rozamiento dinámico y el estático, pero se tiende a pensar que el estático es algo mayor que el dinámico, porque al permanecer en reposo ambas superficies pueden aparecer enlaces iónicos, o incluso microsoldaduras entre las superficies, factores que desaparecen en estado de movimiento. Este fenómeno es tanto mayor cuanto más perfectas son las superficies. Un caso más o menos común es el del gripaje de un motor por estar mucho tiempo parado (no solo se arruina por una temperatura muy elevada), ya que al permanecer las superficies, del pistón y la camisa, durante largo tiempo en contacto y en reposo, pueden llegar a soldarse entre sí.
Un ejemplo bastante común de fricción dinámica es la ocurrida entre los neumáticos de un auto y el pavimento en un frenado abrupto.
Como comprobación de lo anterior, se realiza el siguiente ensayo, sobre una superficie horizontal se coloca un cuerpo, y le aplica una fuerza horizontal F , muy pequeña en un principio, se puede ver que el cuerpo no se desplaza, la fuerza de rozamiento iguala a la fuerza aplicada y el cuerpo permanece en reposo, en la gráfica se representa en el eje horizontal la fuerza F aplicada, y en el eje vertical la fuerza de rozamiento Fr.
Entre los puntos O y A, ambas fuerzas son iguales y el cuerpo permanece estático; al sobrepasar el punto A el cuerpo súbitamente se comienza a desplazar, la fuerza ejercida en A es la máxima que el cuerpo puede soportar sin deslizarse, se denomina Fe o fuerza estática de fricción; la fuerza necesaria para mantener el cuerpo en movimiento una vez iniciado el desplazamiento es Fd o fuerza dinámica, es menor que la que fue necesaria para iniciarlo (Fe). La fuerza dinámica permanece constante.
Si la fuerza de rozamiento Fr es proporcional a la normal N, y a la constante de proporcionalidad se la llama :
Y permaneciendo la fuerza normal constante, se puede calcular dos coeficientes de rozamiento: el estático y el dinámico como:
donde el coeficiente de rozamiento estático corresponde al de la mayor fuerza que el cuerpo puede soportar inmediatamente antes de iniciar el movimiento y elcoeficiente de rozamiento dinámico corresponde a la fuerza necesaria para mantener el cuerpo en movimiento una vez iniciado.
Fricción estática
Es la fuerza que se opone al inicio del deslizamiento. Sobre un cuerpo en reposo al que se aplica una fuerza horizontal F, intervienen cuatro fuerzas:
- F: la fuerza aplicada.
- Fr: la fuerza de rozamiento entre la superficie de apoyo y el cuerpo, y que se opone al deslizamiento.
- P: el peso del propio cuerpo, igual a su masa por la aceleración de la gravedad.
- N: la fuerza normal, con la que la superficie reacciona sobre el cuerpo sosteniéndolo.
Dado que el cuerpo está en reposo la fuerza aplicada y la fuerza de rozamiento son iguales, y el peso del cuerpo y la normal:
Se sabe que el peso del cuerpo P es el producto de su masa por la aceleración de la gravedad (g), y que la fuerza de rozamiento es el coeficiente estático por la normal:
esto es:
La fuerza horizontal F máxima que se puede aplicar a un cuerpo en reposo es igual al coeficiente de rozamiento estático por su masa y por la aceleración de la gravedad.
Rozamiento dinámico
Dado un cuerpo en movimiento sobre una superficie horizontal, deben considerarse las siguientes fuerzas:
- Fa: la fuerza aplicada.
- Fr: la fuerza de rozamiento entre la superficie de apoyo y el cuerpo, y que se opone al deslizamiento.
- P: el peso del propio cuerpo, igual a su masa por la aceleración de la gravedad.
- N: la fuerza normal, que la superficie hace sobre el cuerpo sosteniéndolo.
Como equilibrio dinámico, se puede establecer que:
Sabiendo que:
prescindiendo de los signos para tener en cuenta solo las magnitudes, se puede reescribir la segunda ecuación de equilibrio dinámico como:
Es decir, la fuerza de empuje aplicada sobre el cuerpo es igual a la fuerza resultante menos la fuerza de rozamiento que el cuerpo opone a ser acelerado. De esa esa misma expresión se deduce que la aceleración que sufre el cuerpo, al aplicarle una fuerza Fa mayor que la fuerza de rozamiento Fr con la superficie sobre la que se apoya.